3.86 \(\int \frac{1}{(a+b x^2) \sqrt{c+d x^2} (e+f x^2)^{3/2}} \, dx\)

Optimal. Leaf size=344 \[ -\frac{\sqrt{e} \sqrt{f} \sqrt{c+d x^2} (-a d f-b c f+2 b d e) \text{EllipticF}\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right ),1-\frac{d e}{c f}\right )}{c \sqrt{e+f x^2} (b e-a f)^2 (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac{b^2 e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} \sqrt{e+f x^2} (b e-a f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac{f^{3/2} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} \sqrt{e+f x^2} (b e-a f) (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

[Out]

(f^(3/2)*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(Sqrt[e]*(b*e - a*f)*(d*e -
c*f)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) - (Sqrt[e]*Sqrt[f]*(2*b*d*e - b*c*f - a*d*f)*Sqrt[
c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*(b*e - a*f)^2*(d*e - c*f)*Sqrt[(e*(c +
d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (b^2*e^(3/2)*Sqrt[c + d*x^2]*EllipticPi[1 - (b*e)/(a*f), ArcTan[(S
qrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(a*c*Sqrt[f]*(b*e - a*f)^2*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e
+ f*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.222421, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.156, Rules used = {546, 539, 525, 418, 411} \[ \frac{b^2 e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} \sqrt{e+f x^2} (b e-a f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac{f^{3/2} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} \sqrt{e+f x^2} (b e-a f) (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{e} \sqrt{f} \sqrt{c+d x^2} (-a d f-b c f+2 b d e) F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c \sqrt{e+f x^2} (b e-a f)^2 (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)*Sqrt[c + d*x^2]*(e + f*x^2)^(3/2)),x]

[Out]

(f^(3/2)*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(Sqrt[e]*(b*e - a*f)*(d*e -
c*f)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) - (Sqrt[e]*Sqrt[f]*(2*b*d*e - b*c*f - a*d*f)*Sqrt[
c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*(b*e - a*f)^2*(d*e - c*f)*Sqrt[(e*(c +
d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (b^2*e^(3/2)*Sqrt[c + d*x^2]*EllipticPi[1 - (b*e)/(a*f), ArcTan[(S
qrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(a*c*Sqrt[f]*(b*e - a*f)^2*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e
+ f*x^2])

Rule 546

Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Dist[b^2/(b*c
- a*d)^2, Int[((c + d*x^2)^(q + 2)*(e + f*x^2)^r)/(a + b*x^2), x], x] - Dist[d/(b*c - a*d)^2, Int[(c + d*x^2)^
q*(e + f*x^2)^r*(2*b*c - a*d + b*d*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && LtQ[q, -1]

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rule 525

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx &=\frac{b^2 \int \frac{\sqrt{e+f x^2}}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{(b e-a f)^2}-\frac{f \int \frac{2 b e-a f+b f x^2}{\sqrt{c+d x^2} \left (e+f x^2\right )^{3/2}} \, dx}{(b e-a f)^2}\\ &=\frac{b^2 e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} (b e-a f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{f^2 \int \frac{\sqrt{c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{(b e-a f) (d e-c f)}-\frac{(f (2 b d e-b c f-a d f)) \int \frac{1}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{(b e-a f)^2 (d e-c f)}\\ &=\frac{f^{3/2} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} (b e-a f) (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}-\frac{\sqrt{e} \sqrt{f} (2 b d e-b c f-a d f) \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{c (b e-a f)^2 (d e-c f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{b^2 e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} (b e-a f)^2 \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}\\ \end{align*}

Mathematica [C]  time = 0.619468, size = 221, normalized size = 0.64 \[ \frac{-i b e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (c f-d e) \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-i a d e f \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-a f^2 x \sqrt{\frac{d}{c}} \left (c+d x^2\right )}{a e \sqrt{\frac{d}{c}} \sqrt{c+d x^2} \sqrt{e+f x^2} (a f-b e) (d e-c f)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^2)*Sqrt[c + d*x^2]*(e + f*x^2)^(3/2)),x]

[Out]

(-(a*Sqrt[d/c]*f^2*x*(c + d*x^2)) - I*a*d*e*f*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt
[d/c]*x], (c*f)/(d*e)] - I*b*e*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d),
I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)])/(a*Sqrt[d/c]*e*(-(b*e) + a*f)*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2
])

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 303, normalized size = 0.9 \begin{align*}{\frac{1}{ \left ( af-be \right ) ae \left ( cf-de \right ) \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ({x}^{3}ad{f}^{2}\sqrt{-{\frac{d}{c}}}-\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) adef-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) bcef\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) bd{e}^{2}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+xac{f}^{2}\sqrt{-{\frac{d}{c}}} \right ) \sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x)

[Out]

(x^3*a*d*f^2*(-d/c)^(1/2)-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*
d*e*f-EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*c*e*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(
1/2)+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*d*e^2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1
/2)+x*a*c*f^2*(-d/c)^(1/2))*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/e/a/(a*f-b*e)/(-d/c)^(1/2)/(c*f-d*e)/(d*f*x^4+c*f*
x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )} \sqrt{d x^{2} + c}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*sqrt(d*x^2 + c)*(f*x^2 + e)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x^{2}\right ) \sqrt{c + d x^{2}} \left (e + f x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)/(d*x**2+c)**(1/2)/(f*x**2+e)**(3/2),x)

[Out]

Integral(1/((a + b*x**2)*sqrt(c + d*x**2)*(e + f*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )} \sqrt{d x^{2} + c}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)*sqrt(d*x^2 + c)*(f*x^2 + e)^(3/2)), x)